Associated Legendre Function of the First Kind/Examples/m gt n
Jump to navigation
Jump to search
Example of Associated Legendre Function of the First Kind
Let $\map { {P_n}^m} x$ denote an associated Legendre function of the first kind.
Let $m > n$.
Then:
- $\map { {P_n}^m} x = 0$
Proof
From Derivative Form of Associated Legendre Function of the First Kind:
- $\map { {P_n}^m} x = \dfrac {\paren {1 - x^2}^{m / 2} } {2^n n!} \dfrac {\d^{m + n} } {\d x^{m + n} } \paren {x^2 - 1}^n$
We have that:
- $\paren {x^2 - 1}^n = x^{2 n} + \map Q x$
where $\map Q x$ is a polynomial of degree $2 n - 2$.
Next we note that $m > n \implies m + n > 2 n > 2 n - 2$.
Hence:
\(\ds \dfrac {\d^{m + n} } {\d x^{m + n} } \paren {x^2 - 1}^n\) | \(=\) | \(\ds \map {\dfrac {\d^{m + n} } {\d x^{m + n} } } {x^{2 n} + \map Q x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
Hence:
- $\dfrac {\paren {1 - x^2}^{m / 2} } {2^n n!} \dfrac {\d^{m + n} } {\d x^{m + n} } \paren {x^2 - 1}^n = 0$
and the result follows.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 26$: Associated Legendre Functions: Associated Legendre Functions of the First Kind: $26.4$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 28$: Legendre and Associated Legendre Functions: Associated Legendre Functions of the First Kind: $28.52.$