Associated Legendre Function of the First Kind/Examples/1, 1
Jump to navigation
Jump to search
Example of Associated Legendre Function of the First Kind
Let $\map { {P_n}^m} x$ denote an associated Legendre function of the first kind.
Then:
- $\map { {P_1}^1} x = \paren {1 - x^2}^{1/2} = \sqrt {1 - x^2}$
Proof
\(\ds \map { {P_n}^m} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{m / 2} } {2^n n!} \dfrac {\d^{m + n} } {\d x^{m + n} } \paren {x^2 - 1}^n\) | Derivative Form of Associated Legendre Function of the First Kind | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map { {P_1}^1} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{1 / 2} } {2^1 1!} \dfrac {\d^2} {\d x^2} \paren {x^2 - 1}^1\) | setting $m = n = 1$ | ||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{1 / 2} } 2 \dfrac {\d^2} {\d x^2} \paren {x^2 - 1}\) | simplifying |
Then we have:
\(\ds \map {\dfrac {\d^2} {\d x^2} } {x^2 - 1}\) | \(=\) | \(\ds \map {\dfrac \d {\d x} } {2 x}\) | Derivative of Power | |||||||||||
\(\text {(2)}: \quad\) | \(\ds \) | \(=\) | \(\ds 2\) | Derivative of Power again |
Hence:
\(\ds \map { {P_n}^m} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{1 / 2} } 2 \dfrac {\d^2} {\d x^2} \paren {x^2 - 1}\) | from $(1)$ above | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{1 / 2} } 2 \times 2\) | from $(2)$ above | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 - x^2}^{1 / 2}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {1 - x^2}\) | simplifying |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 26$: Associated Legendre Functions: Associated Legendre Functions of the First Kind: $26.5$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 28$: Legendre and Associated Legendre Functions: Associated Legendre Functions of the First Kind: $28.53.$