Asymptotic Expansion for Fresnel Cosine Integral Function
Jump to navigation
Jump to search
Theorem
\(\ds \map {\operatorname C} x\) | \(\sim\) | \(\ds \frac 1 2 + \frac 1 {\sqrt {2 \pi} } \paren {\map \sin {x^2} \paren {\sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n + 1}!} {2^{3 n} n! x^{4 n + 1} } } - \frac 1 2 \map \cos {x^2} \paren {\sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n + 1}!} {2^{3 n} n! x^{4 n + 3} } } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 + \frac 1 {\sqrt {2 \pi} } \paren {\map \sin {x^2} \paren {\frac 1 x - \frac {1 \times 3} {2^2 x^5} + \frac {1 \times 3 \times 5 \times 7} {2^4 x^9} - \cdots} - \map \cos {x^2} \paren {\frac 1 {2 x^3} - \frac {1 \times 3 \times 5} {2^3 x^7} + \cdots} }\) |
where:
- $\operatorname C$ denotes the Fresnel cosine integral function
- $\sim$ denotes asymptotic equivalence as $x \to \infty$.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Fresnel Cosine Integral $\ds \map {\operatorname C} x = \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u$: $35.22$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Fresnel Cosine Integral $\ds \map {\operatorname C} x = \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u$: $36.22.$