Fresnel Cosine Integral Function is Odd
Jump to navigation
Jump to search
Theorem
- $\map {\operatorname C} {-x} = -\map {\operatorname C} x$
where:
- $\operatorname C$ denotes the Fresnel cosine integral function
- $x$ is a real number.
Proof
\(\ds \map {\operatorname C} {-x}\) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \int_0^{-x} \cos u^2 \rd u\) | Definition of Fresnel Cosine Integral Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -\sqrt {\frac 2 \pi} \int_0^{-\paren {-x} } \map \cos {\paren {-u}^2} \rd u\) | substituting $u \mapsto -u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\map {\operatorname C} x\) | Definition of Fresnel Cosine Integral Function |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Fresnel Cosine Integral $\ds \map {\operatorname C} x = \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u$: $35.23$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Fresnel Cosine Integral $\ds \map {\operatorname C} x = \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u$: $36.23.$