Power Series Expansion for Fresnel Cosine Integral Function
Jump to navigation
Jump to search
Theorem
\(\ds \map {\operatorname C} x\) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{4 n + 1} } {\paren {4 n + 1} \paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \paren {\dfrac x {1!} - \dfrac {x^5} {5 \cdot 2!} + \dfrac {x^9} {9 \cdot 4!} - \dfrac {x^{13} } {13 \cdot 6!} + \cdots}\) |
where $\operatorname C$ denotes the Fresnel cosine integral function.
Proof
\(\ds \map {\operatorname C} x\) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u\) | Definition of Fresnel Cosine Integral Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \int_0^x \paren {\sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {u^2}^{2 n} } {\paren {2 n}!} } \rd u\) | Power Series Expansion for Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^n} {\paren {2 n}!} \int_0^x u^{4 n} \rd u\) | Power Series is Termwise Integrable within Radius of Convergence | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{4 n + 1} } {\paren {4 n + 1} \paren {2 n}!}\) | Primitive of Power |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Fresnel Cosine Integral $\ds \map {\operatorname C} x = \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u$: $35.21$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Fresnel Cosine Integral $\ds \map {\operatorname C} x = \sqrt {\frac 2 \pi} \int_0^x \cos u^2 \rd u$: $36.21.$