Sine Integral Function is Odd
Jump to navigation
Jump to search
Theorem
- $\map \Si {-x} = -\map \Si x$
where:
- $\Si$ denotes the sine integral function
- $x$ is a real number.
Proof
\(\ds \map \Si {-x}\) | \(=\) | \(\ds \int_0^{-x} \frac {\sin u} u \rd u\) | Definition of Sine Integral Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -\int_0^x \frac {\map \sin {-u} } {-u} \rd u\) | substituting $u \mapsto -u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\int_0^x \frac {\sin u} u \rd u\) | Sine Function is Odd | |||||||||||
\(\ds \) | \(=\) | \(\ds -\map \Si x\) | Definition of Sine Integral Function |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Sine Integral $\ds \map {Si} x = \int_0^x \frac {\sin u} u \rd u$: $35.13$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Sine Integral $\ds \map \Si x = \int_0^x \frac {\sin u} u \rd u$: $36.13.$