Bounds for Complex Exponential

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\exp$ denote the complex exponential.

Let $z\in\C$ with $|z|\leq\frac12$.


Then $\frac 1 2 |z| \leq \left| \exp(z) -1 \right| \leq \frac32|z|$.


Proof

By definition of complex exponential:

$\exp z = \displaystyle \sum_{n\mathop=1}^\infty\frac{z^n}{n!}$

Thus

\(\displaystyle \left\vert \exp z -1 - z \right\vert\) \(=\) \(\displaystyle \left\vert \sum_{n\mathop=2}^\infty \frac{z^n}{n!} \right\vert\) Linear Combination of Convergent Series
\(\displaystyle \) \(\leq\) \(\displaystyle \sum_{n\mathop=2}^\infty\left\vert \frac{z^n}{n!} \right\vert\) Triangle Inequality for Series
\(\displaystyle \) \(\leq\) \(\displaystyle \sum_{n\mathop=2}^\infty \frac{\vert z\vert^n }2\) $n\geq2$
\(\displaystyle \) \(=\) \(\displaystyle \frac{\vert z\vert^2 /2}{1- \vert z\vert}\) Sum of Geometric Progression
\(\displaystyle \) \(\leq\) \(\displaystyle \frac12\vert z\vert\) $\vert z\vert \leq \frac12$

By the Triangle Inequality:

$\frac12 \vert z\vert\leq \left\vert \exp z - 1 \right\vert \leq \frac32\vert z\vert$

$\blacksquare$


Also see