Broken Chord Theorem/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Broken Chord.png


Let $A$ and $C$ be arbitrary points on a circle in the plane.

Let $M$ be a point on the circle with arc $AM = $ arc $MC$.

Let $B$ lie on the minor arc of $AM$.

Draw chords $AB$ and $BC$.

Find $D$ such that $MD \perp BC$.

Then:

$AB + BD = DC$


Proof

Broken Chord 2.png

Let point $E$ be such that $BD = DE$.

Extend $BC$ to $G$ such that $GD = DC$.

\(\ds \triangle MDB\) \(\cong\) \(\ds \triangle MDE\) Triangle Side-Angle-Side Congruence
\(\ds \triangle MDG\) \(\cong\) \(\ds \triangle MDC\) Triangle Side-Angle-Side Congruence
\(\ds \leadsto \ \ \) \(\ds MG\) \(=\) \(\ds MC\)
\(\ds \leadsto \ \ \) \(\ds \angle MGC\) \(=\) \(\ds \angle MCG\)

Given:

arc $AM$ = arc $MC$
\(\ds AM\) \(=\) \(\ds MC\) Equal Arcs of Circles Subtended by Equal Straight Lines
\(\ds AM\) \(=\) \(\ds MG\) Common Notion 1


By the definition of isosceles triangles:

$\triangle MGA$ is isosceles.


\(\ds \angle MGA\) \(=\) \(\ds \angle MAG\) Isosceles Triangle has Two Equal Angles
\(\ds \angle MCG\) \(=\) \(\ds \angle MAB\) Angles on Equal Arcs are Equal
\(\ds \angle MGC\) \(=\) \(\ds \angle MAB\) Common Notion 1
\(\ds \angle BGA\) \(=\) \(\ds \angle BAG\) Common Notion 3


By Triangle with Two Equal Angles is Isosceles:

$\triangle BAG$ is isosceles.


\(\ds AB\) \(=\) \(\ds GB\) isosceles triangles
\(\ds GD\) \(=\) \(\ds DC\) By construction
\(\ds GB + BD\) \(=\) \(\ds DE + EC\) Common Notion 2
\(\ds AB + BD = DE + EC\) \(=\) \(\ds DE + EC\) Common Notion 1
\(\ds AB + BD\) \(=\) \(\ds DC\) Addition

$\blacksquare$