Cartesian Product with Proper Class is Proper Class

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be a proper class.

Let $B$ be a class which is not empty.


Then the Cartesian product $\left({ A \times B }\right)$ is a proper class.


Proof

NotZFC.jpg

This page is beyond the scope of ZFC, and should not be used in anything other than the theory in which it resides.

If you see any proofs that link to this page, please insert this template at the top.

If you believe that the contents of this page can be reworked to allow ZFC, then you can discuss it at the talk page.


Suppose, to the contrary, that $\left({ A \times B }\right)$ is small.

By Domain of Small Relation is Small, the domain of $\left({ A \times B }\right)$ is small.


Since $B \ne \varnothing$, Nonempty Class has Members shows that $\exists y: y \in B$.

The domain of $\left({ A \times B }\right)$ is the collection of all $x \in A$ such that $\exists y: y \in B$.


The domain of $\left({ A \times B }\right)$ is $A$.

Therefore, $A$ is small, contradicting the fact that it is a proper class.

$\blacksquare$


Sources