Category:Characteristic Functions
This category contains results about Characteristic Functions in the context of Set Theory.
Definitions specific to this category can be found in Definitions/Characteristic Functions.
Set
Let $E \subseteq S$.
The characteristic function of $E$ is the function $\chi_E: S \to \set {0, 1}$ defined as:
- $\map {\chi_E} x = \begin {cases} 1 & : x \in E \\ 0 & : x \notin E \end {cases}$
That is:
- $\map {\chi_E} x = \begin {cases} 1 & : x \in E \\ 0 & : x \in \relcomp S E \end {cases}$
where $\relcomp S E$ denotes the complement of $E$ relative to $S$.
Relation
The concept of a characteristic function of a subset carries over directly to relations.
Let $\RR \subseteq S \times T$ be a relation.
The characteristic function of $\RR$ is the mapping $\chi_\RR: S \times T \to \set {0, 1}$ defined as:
- $\map {\chi_\RR} {x, y} = \begin {cases} 1 & : \tuple {x, y} \in \RR \\ 0 & : \tuple {x, y} \notin \RR \end{cases}$
It can be expressed in Iverson bracket notation as:
- $\map {\chi_\RR} {x, y} = \sqbrk {\tuple {x, y} \in \RR}$
More generally, let $\ds \mathbb S = \prod_{i \mathop = 1}^n S_i = S_1 \times S_2 \times \ldots \times S_n$ be the cartesian product of $n$ sets $S_1, S_2, \ldots, S_n$.
Let $\RR \subseteq \mathbb S$ be an $n$-ary relation on $\mathbb S$.
The characteristic function of $\RR$ is the mapping $\chi_\RR: \mathbb S \to \set {0, 1}$ defined as:
- $\map {\chi_\RR} {s_1, s_2, \ldots, s_n} = \begin {cases} 1 & : \tuple {s_1, s_2, \ldots, s_n} \in \RR \\ 0 & : \tuple {s_1, s_2, \ldots, s_n} \notin \RR \end {cases}$
It can be expressed in Iverson bracket notation as:
- $\map {\chi_\RR} {s_1, s_2, \ldots, s_n} = \sqbrk {\tuple {s_1, s_2, \ldots, s_n} \in \RR}$
Subcategories
This category has the following 6 subcategories, out of 6 total.
Pages in category "Characteristic Functions"
The following 18 pages are in this category, out of 18 total.
C
- Cardinality of Set of Characteristic Functions on Finite Set
- Characteristic Function Determined by 0-Fiber
- Characteristic Function Determined by 1-Fiber
- Characteristic Function Measurable iff Set Measurable
- Characteristic Function of Disjoint Union
- Characteristic Function of Intersection
- Characteristic Function of Limit Inferior of Sequence of Sets
- Characteristic Function of Limit Superior of Sequence of Sets
- Characteristic Function of Null Set is A.E. Equal to Zero
- Characteristic Function of Preimage
- Characteristic Function of Set Difference
- Characteristic Function of Subset
- Characteristic Function of Symmetric Difference
- Characteristic Function of Union
- Characteristic Function of Universe