Category:Mapping Theory
Jump to navigation
Jump to search
This category contains results about Mapping Theory.
Definitions specific to this category can be found in Definitions/Mapping Theory.
Mapping theory is the subfield of set theory concerned with the properties of mappings.
Subcategories
This category has the following 86 subcategories, out of 86 total.
B
- Binary Messes (1 P)
C
- Codomains (Relation Theory) (empty)
- Conformal Transformations (5 P)
- Continuous Operators (1 P)
- Convergent Mappings (empty)
D
- Dependent Variables (empty)
E
- Empty Mapping (7 P)
- Examples of Multifunctions (3 P)
- Examples of Preimages of Mappings (empty)
- Examples of Solution Sets (7 P)
- Extrema of Mappings (empty)
F
G
- G-Sets (1 P)
H
I
- Idempotent Mappings (2 P)
- Independent Variables (empty)
- Invariant Sets (empty)
- Involutions (9 P)
L
M
N
O
P
Q
- Quotient Theorem for Sets (4 P)
R
S
- Self-Maps (3 P)
T
U
- Union Mappings (5 P)
W
Pages in category "Mapping Theory"
The following 48 pages are in this category, out of 48 total.
C
- Cantor's Diagonal Argument
- Cardinality of Extensions of Function on Subset of Finite Set
- Cardinality of Mapping
- Cardinality of Set of All Mappings
- Cardinality of Set of All Mappings from Empty Set
- Cardinality of Set of All Mappings to Empty Set
- Complement of Preimage equals Preimage of Complement
- Composition of Commuting Idempotent Mappings is Idempotent
- Composition of Continuous Linear Transformations is Continuous Linear Transformation
- Composition of Inflationary and Idempotent Mappings
- Composition of Mapping with Mapping Restricted to Image
- Condition for Agreement of Family of Mappings