Category:Definitions/Discrete Random Variables
This category contains definitions related to Discrete Random Variables.
Related results can be found in Category:Discrete Random Variables.
Definition 1
Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.
Let $\struct {S, \Sigma'}$ be a measurable space.
A discrete random variable on $\struct {\Omega, \Sigma, \Pr}$ taking values in $\struct {S, \Sigma'}$ is a mapping $X: \Omega \to S$ such that:
- $(1): \quad$ The image of $X$ is a countable subset of $S$
- $(2): \quad$ $\forall x \in S: \set {\omega \in \Omega: \map X \omega = x} \in \Sigma$
Alternatively, the second condition can be written as:
- $(2): \quad$ $\forall x \in S: X^{-1} \sqbrk {\set x} \in \Sigma$
where $X^{-1} \sqbrk {\set x}$ denotes the preimage of $\set x$.
Definition 2
Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.
Let $\struct {S, \Sigma'}$ be a measurable space.
Let $X$ be a random variable on $\struct {\Omega, \Sigma, \Pr}$ taking values in $\struct {S, \Sigma'}$.
Then we say that $X$ is a discrete random variable on $\struct {\Omega, \Sigma, \Pr}$ taking values in $\struct {S, \Sigma'}$ if and only if:
Pages in category "Definitions/Discrete Random Variables"
The following 2 pages are in this category, out of 2 total.