Category:Definitions/Isomorphisms (Abstract Algebra)
Jump to navigation
Jump to search
This category contains definitions related to isomorphisms in the context of abstract algebra.
Related results can be found in Category:Isomorphisms (Abstract Algebra).
An isomorphism is a homomorphism which is a bijection.
That is, it is a mapping which is both a monomorphism and an epimorphism.
Subcategories
This category has the following 6 subcategories, out of 6 total.
A
I
M
R
Pages in category "Definitions/Isomorphisms (Abstract Algebra)"
The following 18 pages are in this category, out of 18 total.
I
- Definition:Isometric Isomorphism
- Definition:Isomorphic Algebraic Structures
- Definition:Isomorphic Copy
- Definition:Isomorphism (Abstract Algebra)
- Definition:Isomorphism (Abstract Algebra)/Isomorphic Copy
- Definition:Isomorphism (Abstract Algebra)/Monoid Isomorphism
- Definition:Isomorphism (Abstract Algebra)/R-Algebraic Structure Isomorphism
- Definition:Isomorphism (Abstract Algebra)/R-Algebraic Structure Isomorphism/Module Isomorphism
- Definition:Isomorphism (Abstract Algebra)/R-Algebraic Structure Isomorphism/Vector Space Isomorphism
- Definition:Isomorphism (Abstract Algebra)/Ring Isomorphism
- Definition:Isomorphism (Abstract Algebra)/Semigroup Isomorphism
- Definition:Isomorphism Class (Algebraic Structures)