Category:Definitions/Orthogonal Curvilinear Coordinates
Jump to navigation
Jump to search
This category contains definitions related to Orthogonal Curvilinear Coordinates.
Related results can be found in Category:Orthogonal Curvilinear Coordinates.
Let $\tuple {q_1, q_2, q_3}$ denote a set of curvilinear coordinates.
Let the relation between those curvilinear coordinates and Cartesian coordinates be expressed as:
\(\ds x\) | \(=\) | \(\ds \map x {q_1, q_2, q_3}\) | ||||||||||||
\(\ds y\) | \(=\) | \(\ds \map y {q_1, q_2, q_3}\) | ||||||||||||
\(\ds z\) | \(=\) | \(\ds \map z {q_1, q_2, q_3}\) |
where $\tuple {x, y, z}$ denotes the Cartesian coordinates.
Let these equations have the property that:
- $\dfrac {\partial x} {\partial q_i} \dfrac {\partial x} {\partial q_j} + \dfrac {\partial y} {\partial q_i} \dfrac {\partial y} {\partial q_j} + \dfrac {\partial z} {\partial q_i} \dfrac {\partial z} {\partial q_j} = 0$
wherever $i \ne j$.
Then $\tuple {q_1, q_2, q_3}$ are orthogonal curvilinear coordinates.
This category currently contains no pages or media.