Category:Dirichlet Beta Function at Odd Positive Integers
Jump to navigation
Jump to search
This category contains pages concerning Dirichlet Beta Function at Odd Positive Integers:
\(\ds \map \beta {2 n + 1}\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-1}^k} {\paren {2 k + 1}^{2 n + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1^{2 n + 1} } - \frac 1 {3^{2 n + 1} } + \frac 1 {5^{2 n + 1} } - \frac 1 {7^{2 n + 1} } + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^n \dfrac {E_{2 n} \pi^{2 n + 1} } {4^{n + 1} \paren {2 n}!}\) |
where:
- $\beta$ denotes the Dirichlet beta function
- $E_n$ denotes the $n$th Euler number
- $n$ is a non-negative integer.
Pages in category "Dirichlet Beta Function at Odd Positive Integers"
The following 9 pages are in this category, out of 9 total.
D
- Dirichlet Beta Function at Odd Positive Integers
- Dirichlet Beta Function at Odd Positive Integers/Also presented as
- Dirichlet Beta Function at Odd Positive Integers/Corollary
- Dirichlet Beta Function at Odd Positive Integers/Corollary/Also presented as
- Dirichlet Beta Function at Odd Positive Integers/Examples/Dirichlet Beta Function of 1
- Dirichlet Beta Function at Odd Positive Integers/Examples/Dirichlet Beta Function of 1/Proof 1
- Dirichlet Beta Function at Odd Positive Integers/Examples/Dirichlet Beta Function of 1/Proof 2
- Dirichlet Beta Function at Odd Positive Integers/Examples/Dirichlet Beta Function of 3
- Dirichlet Beta Function at Odd Positive Integers/Examples/Dirichlet Beta Function of 5