Dirichlet Beta Function at Odd Positive Integers/Examples/Dirichlet Beta Function of 1/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \beta 1 = \dfrac \pi 4 $


Proof

\(\ds \frac 1 {1 + x^2}\) \(=\) \(\ds 1 - x^2 + x^4 - x^6 + \cdots\) Sum of Infinite Geometric Sequence
\(\ds \int_0^1 \frac 1 {1 + x^2} \rd x\) \(=\) \(\ds \int_0^1 \paren {1 - x^2 + x^4 - x^6 + \cdots } \rd x\) integrating both sides from $0$ to $1$
\(\ds \leadsto \ \ \) \(\ds \map \arctan 1 - \map \arctan 0\) \(=\) \(\ds \intlimits {x - \frac {x^3} 3 + \frac {x^5} 5 - \frac {x^7} 7 + \cdots } 0 1\) Derivative of Arctangent Function, Primitive of Power
\(\ds \leadsto \ \ \) \(\ds \frac \pi 4 - 0\) \(=\) \(\ds 1 - \frac 1 3 + \frac 1 5 - \frac 1 7 + \cdots\) Arctangent of One, Arctangent of Zero is Zero
\(\ds \leadsto \ \ \) \(\ds \frac \pi 4\) \(=\) \(\ds \map \beta 1\) Definition of Dirichlet Beta Function

$\blacksquare$