Dirichlet Beta Function at Odd Positive Integers/Examples/Dirichlet Beta Function of 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\beta$ denote the Dirichlet beta function.

Then:

$\map \beta 1 = \dfrac \pi 4 $


Proof 1

\(\ds \map \beta {2 n + 1}\) \(=\) \(\ds \paren {-1}^n \dfrac {E_{2 n} \pi^{2 n + 1} } {4^{n + 1} \paren {2 n}!}\) Dirichlet Beta Function at Odd Positive Integers
\(\ds \leadsto \ \ \) \(\ds \map \beta 1\) \(=\) \(\ds \paren {-1}^0 \dfrac {E_0 \pi} {4 \paren 0!}\) setting $n \gets 0$
\(\ds \) \(=\) \(\ds \frac \pi 4\) Factorial of Zero, Zeroth Power of Real Number equals One and Euler Number Values:$E_0 = 1$

$\blacksquare$


Proof 2

\(\ds \frac 1 {1 + x^2}\) \(=\) \(\ds 1 - x^2 + x^4 - x^6 + \cdots\) Sum of Infinite Geometric Sequence
\(\ds \int_0^1 \frac 1 {1 + x^2} \rd x\) \(=\) \(\ds \int_0^1 \paren {1 - x^2 + x^4 - x^6 + \cdots } \rd x\) integrating both sides from $0$ to $1$
\(\ds \leadsto \ \ \) \(\ds \map \arctan 1 - \map \arctan 0\) \(=\) \(\ds \intlimits {x - \frac {x^3} 3 + \frac {x^5} 5 - \frac {x^7} 7 + \cdots } 0 1\) Derivative of Arctangent Function, Primitive of Power
\(\ds \leadsto \ \ \) \(\ds \frac \pi 4 - 0\) \(=\) \(\ds 1 - \frac 1 3 + \frac 1 5 - \frac 1 7 + \cdots\) Arctangent of One, Arctangent of Zero is Zero
\(\ds \leadsto \ \ \) \(\ds \frac \pi 4\) \(=\) \(\ds \map \beta 1\) Definition of Dirichlet Beta Function

$\blacksquare$