Category:Divisibility
Jump to navigation
Jump to search
This category contains results about Divisibility in the context of Abstract Algebra, in particular Ring Theory.
Definitions specific to this category can be found in Definitions/Divisibility.
Let $\struct {R, +, \circ}$ be an ring with unity whose zero is $0_R$ and whose unity is $1_R$.
Let $x, y \in D$.
We define the term $x$ divides $y$ in $R$ as follows:
- $x \mathrel {\divides_R} y \iff \exists t \in R: y = t \circ x$
When no ambiguity results, the subscript is usually dropped, and $x$ divides $y$ in $R$ is just written $x \divides y$.
Subcategories
This category has the following 7 subcategories, out of 7 total.
Pages in category "Divisibility"
The following 12 pages are in this category, out of 12 total.