Non-Zero Natural Numbers under Multiplication with Divisibility forms Ordered Semigroup
Jump to navigation
Jump to search
Theorem
Let $\N_{>0}$ be the set of natural numbers without zero, that is, $\N_{>0} = \N \setminus \set 0$.
Let $\divides$ denote the divisibility relation on $\N_{>0}$:
- $\forall a, b \in \N_{>0}: a \divides b \iff \exists k \in \Z: k \times a = b$
where $\times$ denotes conventional integer multiplication.
The ordered structure $\struct {\N_{>0}, \times, \divides}$ forms an ordered semigroup.
Proof
First we note that from Non-Zero Natural Numbers under Multiplication form Commutative Semigroup, $\struct {\N_{>0}, \times}$ is a semigroup.
From Divisor Relation on Positive Integers is Partial Ordering, $\struct {\N_{>0}, \divides}$ is an ordered set.
It remains to be shown that $\divides$ is compatible with $\times$.
Let $a, b \in \N_{>0}$ such that $a \divides b$.
We have:
\(\ds a\) | \(\divides\) | \(\ds b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists k \in \Z: \, \) | \(\ds k \times a\) | \(=\) | \(\ds b\) | Definition of Divisor of Integer | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall m \in \N_{>0}: \, \) | \(\ds m \times k \times a\) | \(=\) | \(\ds m \times b\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds k \times \paren {m \times a}\) | \(=\) | \(\ds m \times b\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds m \times a\) | \(\divides\) | \(\ds m \times b\) | Definition of Divisor of Integer |
Similarly:
\(\ds a\) | \(\divides\) | \(\ds b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists k \in \Z: \, \) | \(\ds k \times a\) | \(=\) | \(\ds b\) | Definition of Divisor of Integer | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall m \in \N_{>0}: \, \) | \(\ds k \times a \times m\) | \(=\) | \(\ds b \times m\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds k \times \paren {a \times m}\) | \(=\) | \(\ds b \times m\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \times m\) | \(\divides\) | \(\ds b \times m\) | Definition of Divisor of Integer |
Hence the result.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {III}$: The Natural Numbers: $\S 15$: Ordered Semigroups: Exercise $15.9$