Euclidean Algorithm/Examples/299 and 481

From ProofWiki
Jump to navigation Jump to search

Examples of Use of Euclidean Algorithm

The GCD of $299$ and $481$ is found to be:

$\gcd \set {299, 481} = 13$

Hence $13$ can be expressed as an integer combination of $299$ and $481$:

$13 = 5 \times 481 - 8 \times 299$


Proof

\(\text {(1)}: \quad\) \(\ds 481\) \(=\) \(\ds 1 \times 299 + 182\)
\(\text {(2)}: \quad\) \(\ds 299\) \(=\) \(\ds 1 \times 182 + 117\)
\(\text {(3)}: \quad\) \(\ds 182\) \(=\) \(\ds 1 \times 117 + 65\)
\(\text {(4)}: \quad\) \(\ds 117\) \(=\) \(\ds 1 \times 65 + 52\)
\(\text {(5)}: \quad\) \(\ds 65\) \(=\) \(\ds 1 \times 52 + 13\)
\(\ds 52\) \(=\) \(\ds 4 \times 13\)

Thus:

$\gcd \set {299, 481} = 13$


Then we have:

\(\ds 13\) \(=\) \(\ds 65 - 1 \times 52\) from $(5)$
\(\ds \) \(=\) \(\ds 65 - 1 \times \paren {117 - 1 \times 65}\) from $(4)$
\(\ds \) \(=\) \(\ds 2 \times 65 - 1 \times 117\)
\(\ds \) \(=\) \(\ds 2 \times \paren {182 - 1 \times 117} - 1 \times 117\) from $(3)$
\(\ds \) \(=\) \(\ds 2 \times 182 - 3 \times 117\)
\(\ds \) \(=\) \(\ds 2 \times 182 - 3 \times \paren {299 - 1 \times 182}\) from $(2)$
\(\ds \) \(=\) \(\ds 5 \times 182 - 3 \times 299\)
\(\ds \) \(=\) \(\ds 5 \times \paren {481 - 1 \times 299} - 3 \times 299\) from $(1)$
\(\ds \) \(=\) \(\ds 5 \times 481 - 8 \times 299\)

$\blacksquare$


Sources