Category:Matrices
Jump to navigation
Jump to search
This category contains results about Matrices.
Definitions specific to this category can be found in Definitions/Matrices.
Let $S$ be a set.
Let $m, n \in \Z_{>0}$ be strictly positive integers.
An $m \times n$ matrix over $S$ (said $m$ times $n$ or $m$ by $n$) is a mapping from the cartesian product of two integer intervals $\closedint 1 m \times \closedint 1 n$ into $S$.
Subcategories
This category has the following 43 subcategories, out of 43 total.
A
- Antidiagonals (empty)
- Antisymmetric Matrices (empty)
B
- Bidiagonal Matrices (empty)
C
- Canonical Forms of Matrices (empty)
- Characteristic Matrices (empty)
- Column Matrices (3 P)
- Column Sums (empty)
- Complex Matrices (2 P)
- Conformable Matrices (empty)
D
- Diagonal Elements (empty)
- Diagonalizable Matrices (2 P)
E
H
- Hessian Matrices (empty)
I
- Inertia Matrices (empty)
- Involutory Matrices (empty)
J
L
- Leslie Matrices (empty)
M
- Main Antidiagonal (empty)
- Matrix Elements (empty)
N
- Nonsingular Matrices (10 P)
O
- Orders of Matrices (empty)
R
- Row Matrices (3 P)
- Row Sums (empty)
S
- Scalar Matrices (empty)
- Singular Matrices (2 P)
- Stochastic Matrices (empty)
- Subdiagonals (empty)
- Superdiagonals (empty)
T
U
- Unimodular Matrices (empty)
- Unit Diagonals (empty)
Z
Pages in category "Matrices"
The following 2 pages are in this category, out of 2 total.