Category:Minkowski's Inequality
This category contains pages concerning Minkowski's Inequality:
Lebesgue Spaces
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $p \in \closedint 1 \infty$.
Let $f, g: X \to \R$ be $p$-integrable, that is, elements of Lebesgue $p$-space $\map {\LL^p} \mu$.
Then their pointwise sum $f + g: X \to \R$ is also $p$-integrable, and:
- $\norm {f + g}_p \le \norm f_p + \norm g_p$
where $\norm {\, \cdot \, }_p$ denotes the $p$-seminorm.
Theorem for Sums
Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \R_{\ge 0}$ be non-negative real numbers.
Let $p \in \R$, $p \ne 0$ be a real number.
If $p < 0$, then we require that $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ be strictly positive.
If $p > 1$, then:
- $\ds \paren {\sum_{k \mathop = 1}^n \paren {a_k + b_k}^p}^{1/p} \le \paren {\sum_{k \mathop = 1}^n a_k^p}^{1/p} + \paren {\sum_{k \mathop = 1}^n b_k^p}^{1/p}$
If $p < 1$, $p \ne 0$, then:
- $\ds \paren {\sum_{k \mathop = 1}^n \paren {a_k + b_k}^p}^{1/p} \ge \paren {\sum_{k \mathop = 1}^n a_k^p}^{1/p} + \paren {\sum_{k \mathop = 1}^n b_k^p}^{1/p}$
Theorem for Integrals
Let $f, g$ be (Darboux) integrable functions.
Let $p \in \R$ such that $p > 1$.
Then:
- $\ds \paren {\int_a^b \size {\map f x + \map g x}^p \rd x}^{1/p} \le \paren {\int_a^b \size {\map f x}^p \rd x}^{1 / p} + \paren {\int_a^b \size {\map g x}^p \rd x}^{1 / p}$
Source of Name
This entry was named for Hermann Minkowski.
Subcategories
This category has the following 2 subcategories, out of 2 total.
M
Pages in category "Minkowski's Inequality"
The following 5 pages are in this category, out of 5 total.