Category:Primitive of Hyperbolic Cosecant Function
Jump to navigation
Jump to search
This category contains pages concerning Primitive of Hyperbolic Cosecant Function:
Logarithm Form
- $\ds \int \csch x \rd x = -\ln \size {\csch x + \coth x} + C$
where $\csch x + \coth x \ne 0$.
Hyperbolic Tangent Form
- $\ds \int \csch x \rd x = \ln \size {\tanh \frac x 2} + C$
where $\tanh \dfrac x 2 \ne 0$.
Inverse Hyperbolic Cotangent Form
- $\ds \int \csch x \rd x = -2 \map {\coth^{-1} } {e^x} + C$
Inverse Hyperbolic Cotangent of Hyperbolic Cosine Form
- $\ds \int \csch x \rd x = -\map {\coth^{-1} } {\cosh x} + C$
Pages in category "Primitive of Hyperbolic Cosecant Function"
The following 9 pages are in this category, out of 9 total.
P
- Primitive of Hyperbolic Cosecant Function
- Primitive of Hyperbolic Cosecant Function/Hyperbolic Tangent Form
- Primitive of Hyperbolic Cosecant Function/Hyperbolic Tangent Form/Proof 1
- Primitive of Hyperbolic Cosecant Function/Hyperbolic Tangent Form/Proof 2
- Primitive of Hyperbolic Cosecant Function/Inverse Hyperbolic Cotangent Form
- Primitive of Hyperbolic Cosecant Function/Inverse Hyperbolic Cotangent of Hyperbolic Cosine Form
- Primitive of Hyperbolic Cosecant Function/Inverse Hyperbolic Cotangent of Hyperbolic Cosine Form/Proof 1
- Primitive of Hyperbolic Cosecant Function/Inverse Hyperbolic Cotangent of Hyperbolic Cosine Form/Proof 2
- Primitive of Hyperbolic Cosecant Function/Logarithm Form