Primitive of Hyperbolic Cosecant Function/Inverse Hyperbolic Cotangent Form
Jump to navigation
Jump to search
Theorem
- $\ds \int \csch x \rd x = -2 \map {\coth^{-1} } {e^x} + C$
Proof
Let:
\(\ds \int \csch x \rd x\) | \(=\) | \(\ds \int \frac 2 {e^x - e^{-x} } \rd x\) | Definition of Hyperbolic Cosecant | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {2 e^x} {e^{2 x} - 1} \rd x\) | multiplying top and bottom by $e^x$ |
Let:
\(\ds u\) | \(=\) | \(\ds e^x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds u'\) | \(=\) | \(\ds e^x\) | Derivative of Exponential Function |
Then:
\(\ds \int \csch x \rd x\) | \(=\) | \(\ds \int \frac {2 \rd u} {u^2 - 1}\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds -2 \coth^{-1} u + C\) | Primitive of Reciprocal of $x^2 - a^2$: $\coth^{-1}$ form | |||||||||||
\(\ds \) | \(=\) | \(\ds -2 \map {\coth^{-1} } {e^x} + C\) | Definition of $u$ |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Indefinite Integrals: General Rules of Integration: $14.30$
- (in which a mistake apppears)
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: General Rules of Integration: $16.30.$
- (in which the same mistake apppears)