Primitive of Hyperbolic Cosecant Function/Hyperbolic Tangent Form
Jump to navigation
Jump to search
Theorem
- $\ds \int \csch x \rd x = \ln \size {\tanh \frac x 2} + C$
where $\tanh \dfrac x 2 \ne 0$.
Proof 1
Let $u = \tanh \dfrac x 2$.
Then:
\(\ds \int \csch x \rd x\) | \(=\) | \(\ds \int \dfrac 1 {\sinh x} \rd x\) | Definition 2 of Hyperbolic Cosecant | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \dfrac {1 - u^2} {2 u} \dfrac {2 \rd u} {1 - u^2}\) | Hyperbolic Tangent Half-Angle Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \dfrac {\d u} u\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size u + C\) | Logarithm of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size {\tanh \frac x 2} + C\) | substituting back for $u$ |
$\blacksquare$
Proof 2
\(\ds \int \csch x \rd x\) | \(=\) | \(\ds -\ln \size {\csch x + \coth x} + C\) | Primitive of $\csch x$: Logarithm Form | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size {\frac 1 {\csch x + \coth x} } + C\) | Logarithm of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size {\frac 1 {\frac 1 {\sinh x} + \frac {\cosh x} {\sinh x} } } + C\) | Definition 2 of Hyperbolic Cosecant and Definition 2 of Hyperbolic Cotangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size {\frac {\sinh x} {1 + \cosh x} } + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size {\tanh \frac x 2} + C\) | Half Angle Formula for Hyperbolic Tangent: Corollary $1$ |
$\blacksquare$
Sources
- 1960: Margaret M. Gow: A Course in Pure Mathematics ... (previous) ... (next): Chapter $10$: Integration: $10.4$. Standard integrals: Other Standard Results: $\text {(xxviii)}$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.30$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Hyperbolic functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: General Rules of Integration: $16.30.$