Primitive of Hyperbolic Cosecant Function
Jump to navigation
Jump to search
Theorem
Logarithm Form
- $\ds \int \csch x \rd x = -\ln \size {\csch x + \coth x} + C$
where $\csch x + \coth x \ne 0$.
Hyperbolic Tangent Form
- $\ds \int \csch x \rd x = \ln \size {\tanh \frac x 2} + C$
where $\tanh \dfrac x 2 \ne 0$.
Inverse Hyperbolic Cotangent Form
- $\ds \int \csch x \rd x = -2 \map {\coth^{-1} } {e^x} + C$
Inverse Hyperbolic Cotangent of Hyperbolic Cosine Form
- $\ds \int \csch x \rd x = -\map {\coth^{-1} } {\cosh x} + C$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.30$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: General Rules of Integration: $16.30.$