Category:Semigroup Homomorphisms

From ProofWiki
Jump to navigation Jump to search

This category contains results about Semigroup Homomorphisms.
Definitions specific to this category can be found in Definitions/Semigroup Homomorphisms.


Let $\left({S, \circ}\right)$ and $\left({T, *}\right)$ be semigroups.

Let $\phi: S \to T$ be a mapping such that $\circ$ has the morphism property under $\phi$.


That is, $\forall a, b \in S$:

$\phi \left({a \circ b}\right) = \phi \left({a}\right) * \phi \left({b}\right)$


Then $\phi: \left({S, \circ}\right) \to \left({T, *}\right)$ is a semigroup homomorphism.

Subcategories

This category has only the following subcategory.

Pages in category "Semigroup Homomorphisms"

This category contains only the following page.