Cauchy's Residue Theorem
Theorem
Let $U$ be a simply connected open subset of the complex plane $\C$.
Let $a_1, a_2, \dots, a_n$ be finitely many points of $U$.
Let $f: U \to \C$ be analytic in $U \setminus \set {a_1, a_2, \dots, a_n}$.
Let $L$ be a contour in $\C$ oriented anticlockwise.
Let $\partial U_k$ denote the closed contour bounding $U_k$.
Then:
- $\ds \oint_L \map f z \rd z = 2 \pi i \sum_{k \mathop = 1}^n \Res f {a_k}$
where $\Res f {a_k}$ denotes the residue at $a_k$ of $f$.
Proof
Let $\set {U_1, \dotsc, U_n}$ be a set of open subsets of $U$ such that $a_i \in U_i$, and $a_i \notin U_j$ for $i \ne j$.
Let $U_i \cap U_j = \O$ for all $i \ne j$.
By Existence of Laurent Series, around each $a_k$ there is an expansion:
- $\ds \map f z = \sum_{j \mathop = -\infty}^\infty c_j \paren {z - a_k}^j$
convergent in $U_k$.
Write:
- $\ds X = \bigcup_{i \mathop = 1}^n U_i$
Then, by Contour Integral of Concatenation of Contours:
- $\ds \oint_L \map f z \rd z = \oint_{\partial \paren {U \setminus X} } \map f z \rd z + \sum_{k \mathop = 1}^n \oint_{\partial U_k} \map f z \rd z$
As all poles of $f$ in $U$ are contained in $X$, $f$ is holomorphic on $U \setminus X$.
So by the Cauchy-Goursat Theorem:
- $\ds \oint_{\partial \paren {U \setminus X} } \map f z \rd z = 0$
giving:
- $\ds \oint_L \map f z \rd z = \sum_{k \mathop = 1}^n \oint_{\partial U_k} \map f z \rd z$
we have:
\(\ds \oint_{\partial U_k} \map f z \rd z\) | \(=\) | \(\ds \oint_{\partial U_k} \sum_{j \mathop = -\infty}^\infty c_j \paren {z - a_k}^j \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \oint_{\partial U_k} \paren {\sum_{j \mathop = -\infty}^{-2} c_j \paren {z - a_k}^j + \frac {c_{-1} } {z - a_k} + \sum_{j \mathop = 0}^\infty c_j \paren {z - a_k}^j} \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = -\infty}^{-2} \oint_{\partial U_k} c_j \paren {z - a_k}^j \rd z + \oint_{\partial U_k} \paren {\frac {c_{-1} } {z - a_k} } \rd z + \sum_{j \mathop = 0}^\infty \oint_{\partial U_k} c_j \paren {z - a_k}^j \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \oint_{\partial U_k} \paren {\frac {c_{-1} } {z - a_k} } \rd z\) | by Contour Integral of Power, terms where $j \ge 0$ and $j < -1$ vanish | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \pi i c_{-1}\) | Contour Integral of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \pi i \Res f {a_k}\) | Definition of Residue (Complex Analysis) |
So:
- $\ds \oint_L \map f z \rd z = \sum_{k \mathop = 1}^n \oint_{\partial U_k} \map f z \rd z = 2 \pi i \sum_{k \mathop = 1}^n \Res f {a_k}$
$\blacksquare$
Examples
Arbitrary Example
- $\ds \int_\Gamma \dfrac c {z - a} = 2 \pi i c$
where $\Gamma$ is a simple closed curve enclosing the point $z = a$
Also known as
Cauchy's Residue Theorem can also be seen just as the Residue Theorem.
Source of Name
This entry was named for Augustin Louis Cauchy.
Sources
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Cauchy's residue theorem
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): residue: 1.
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Cauchy's Residue Theorem