Definition:Analytic Function
Jump to navigation
Jump to search
Definition
Real Analytic Function
Let $f$ be a real function which is smooth on the open interval $\openint a b$.
Let $\xi \in \openint a b$.
Let $\openint c d \subseteq \openint a b$ be an open interval such that:
- $(1): \quad \xi \in \openint c d$
- $(2): \quad \ds \forall x \in \openint c d: \map f x = \sum_{n \mathop = 0}^\infty \frac {\paren {x - \xi}^n} {n!} \map {f^{\paren n} } x$
Then $f$ is an analytic (real) function at the point $\xi$.
Complex Analytic Function
Let $U \subset \C$ be an open set.
Let $f : U \to \C$ be a complex function.
Then $f$ is analytic in $U$ if and only if for every $z_0 \in U$ there exists a sequence $\sequence {a_n}: \N \to \C$ such that the series:
- $\ds \sum_{n \mathop = 0}^\infty a_n \paren {z - z_0}^n$
converges to $\map f z$ in a neighborhood of $z_0$ in $U$.
Banach Space Valued Function
Let $U$ be an open subset of $\C$.
Let $\struct {X, \norm {\, \cdot \,} }$ be a Banach space over $\C$.
Let $f : U \to X$ be a mapping.
We say that $f$ is analytic if and only if the limit:
- $\ds \lim_{w \mathop \to z} \frac {\map f w - \map f z} {w - z}$
exists for each $z \in U$.
Also see
- Results about analytic functions can be found here.
Sources
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): analytic