Characteristic Function of Union/Variant 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A, B \subseteq S$.

Let $\chi_{A \mathop \cup B}$ be the characteristic function of their union $A \cup B$.


Then:

$\chi_{A \mathop \cup B} = \max \set {\chi_A, \chi_B}$

where $\max$ denotes the max operation.


Proof

Suppose $\map {\chi_{A \mathop \cup B} } s = 0$.

Then $s \notin A \cup B$, so $s \notin A$ and $s \notin B$.

Hence:

$\map {\chi_A} s = \map {\chi_B} s = 0$

and by definition of max operation:

$\max \set {\map {\chi_A} s, \map {\chi_B} s} = 0$


Conversely, suppose:

$\max \set {\map {\chi_A} s, \map {\chi_B} s} = 0$

Then it follows that:

$\map {\chi_A} s = \map {\chi_B} s = 0$

because characteristic functions are $0$ or $1$.

Hence $s \notin A$ and $s \notin B$, so $s \notin A \cup B$.

That is:

$\map {\chi_{A \mathop \cup B} } s = 0$


Above considerations give:

$\map {\chi_{A \mathop \cup B} } s = 0 \iff \max \set {\map {\chi_A} s, \map {\chi_B} s} = 0$

and applying Characteristic Function Determined by 0-Fiber, the result follows.

$\blacksquare$


Sources