Classification of Bounded Sesquilinear Forms

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbb F \in \set {\R, \C}$.

Let $\HH$ a be Hilbert space over $\mathbb F$ with inner product ${\innerprod \cdot \cdot}_\HH$.

Let $\KK$ a be Hilbert space over $\mathbb F$ with inner product ${\innerprod \cdot \cdot}_\KK$.

Let $u: \HH \times \KK \to \Bbb F$ be a bounded sesquilinear form with bound $M$.


Then there exist unique bounded linear transformations $A : \HH \to \KK$ and $B : \KK \to \HH$ such that:

$\forall h \in \HH, k \in \KK: \map u {h, k} = \innerprod {A h} k_\KK = \innerprod h {B k}_\HH$


Furthermore:

$\norm A \le M$

and:

$\norm B \le M$

where $\norm \cdot$ denotes the norm of a bounded linear transformation.


Proof


Also see


Sources