Category:Hilbert Spaces
This category contains results about Hilbert Spaces.
Definitions specific to this category can be found in Definitions/Hilbert Spaces.
Let $H$ be a vector space over $\mathbb F \in \set {\R, \C}$.
Definition 1
Let $\struct {H, \innerprod \cdot \cdot_H}$ be an inner product space.
Let $d: H \times H \to \R_{\ge 0}$ be the metric induced by the inner product norm $\norm {\,\cdot\,}_H$.
Let $\struct {H, d}$ be a complete metric space.
Then $H$ is a Hilbert space over $\mathbb F$.
Definition 2
Let $\struct {H, \norm {\,\cdot\,}_H}$ be a Banach space with norm $\norm {\,\cdot\,}_H : H \to \R_{\ge 0}$.
Let $H$ have an inner product $\innerprod \cdot \cdot_H : H \times H \to \C$ such that the inner product norm is equivalent to the norm $\norm {\,\cdot\,}_H$.
Then $H$ is a Hilbert space over $\mathbb F$.
Subcategories
This category has the following 11 subcategories, out of 11 total.
C
E
H
- Hilbert Space Direct Sums (6 P)
L
O
- Orthogonal Projections (11 P)
P
- Partial Isometries (1 P)
R
- Resolutions of the Identity (7 P)
W
Pages in category "Hilbert Spaces"
The following 38 pages are in this category, out of 38 total.
C
D
E
H
- Hilbert Space Direct Sum is Hilbert Space
- Hilbert Space is Hausdorff Topological Vector Space
- Hilbert Space Isomorphism is Bijection
- Hilbert Space Isomorphism is Equivalence Relation
- Hilbert Space Isomorphism preserves Orthocomplements
- Hilbert Space Separable iff Countable Dimension
- Hilbert Spaces Isomorphic iff Same Dimension