Complex Cosine Function is Unbounded/Proof 1
Jump to navigation
Jump to search
Theorem
The complex cosine function is unbounded.
Proof
Let $K \in \R_{>0}$ be an arbitrary real number.
Let $p = \ln {2 K}$.
Let $z = i p$, where $i$ denotes the imaginary unit.
Then:
\(\ds \cos z\) | \(=\) | \(\ds \dfrac {\exp \paren {i \paren {i p} } + \exp \paren {-i \paren {i p} } } 2\) | Cosine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\exp p + \exp \paren {-p} } 2\) | simplifying | |||||||||||
\(\ds \) | \(>\) | \(\ds \dfrac {\exp p} 2\) | as $\exp \paren {-p} > 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\exp \paren {\ln {2 K} } } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds K\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cmod {\cos \paren {i p} }\) | \(>\) | \(\ds K\) |
Thus for any $K$ we can find $z \in \C$ such that $\cmod {\cos z} > K$.
Hence the result by definition of unbounded.
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$