Definition:Cosine/Complex Function
< Definition:Cosine(Redirected from Definition:Complex Cosine Function)
Jump to navigation
Jump to search
Definition
The complex cosine function $\cos: \C \to \C$ is defined as:
\(\ds \cos z\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {z^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \frac {z^2} {2!} + \frac {z^4} {4!} - \frac {z^6} {6!} + \cdots + \paren {-1}^n \frac {z^{2 n} } {\paren {2 n}!} + \cdots\) |
Examples
Example: $4 \cos z = 3 + i$
Let:
- $4 \cos z = 3 + i$
Then:
- $z = \dfrac {\paren {8 n + 1} \pi} 4 - \dfrac {i \ln 2} 2$ for $n \in \Z$
or:
- $z = \dfrac {\paren {8 m - 1} i \pi} 4 + \dfrac {i \ln 2} 2$ for $m \in \Z$
Also see
- Radius of Convergence of Power Series Expansion for Cosine Function: this power series converges for all values of $z \in \C$.
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.1$. Introduction: $(4.3)$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): cosine
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): cosine series: 1.
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): trigonometric function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): cosine series: 1.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): trigonometric function