Convergence of Sequence in Discrete Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \struct {S, \tau}$ be a discrete topological space.

Let $\sequence {x_n}_{n \mathop \in \N}$ be a sequence in $S$.


Then $\sequence {x_n}_{n \mathop \in \N}$ converges in $T$ to a limit if and only if:

$\exists N \in \N: \forall n \in \N: n > N \implies x_n = x_N$

That is, if and only if the sequence reaches some value of $S$ and "stays there".


Corollary

Let $\sequence {x'_n}_{n \mathop \in \N}$ be a sequence of distinct terms in $S$.


Then $\sequence {x'_n}_{n \mathop \in \N}$ is not convergent in $T$.


Proof

Sufficient Condition

Suppose $\sequence {x_n}_{n \mathop \in \N}$ converges to a limit $L$.

Then:

\(\ds \set L\) \(\in\) \(\ds \tau\) Definition of Discrete Space
\(\ds \leadsto \ \ \) \(\ds \exists N \in \N: \forall n \in \N: \, \) \(\, \ds n > N \implies \, \) \(\ds x_n\) \(\in\) \(\ds \set L\) Definition of Convergent Sequence (Topology)
\(\ds \leadsto \ \ \) \(\ds \exists N \in \N: \forall n \in \N: \, \) \(\, \ds n > N \implies \, \) \(\ds x_n\) \(=\) \(\ds L\) Definition of Singleton
\(\ds \leadsto \ \ \) \(\ds \exists N \in \N: \, \) \(\ds x_N\) \(=\) \(\ds L\) Universal Instantiation
\(\ds \leadsto \ \ \) \(\ds \exists N \in \N: \forall n \in \N: \, \) \(\, \ds n > N \implies \, \) \(\ds x_n\) \(=\) \(\ds x_N\)

$\Box$


Necessary Condition

Let $N \in \N$ such that:

$\forall n \in \N: n > N \implies x_n = x_N$

Let $U$ be an open neighborhood of $x_N$.

Then:

$\forall n \in \N: n > N \implies x_n = x_N \in U$

Thus $\sequence {x_n}_{n \mathop \in \N}$ converges to $x_N$.

$\blacksquare$