Cosine of Complex Number/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.

Then:

$\cos \left({a + b i}\right) = \cos a \cosh b - i \sin a \sinh b$

where:

$\cos$ denotes the cosine function (real and complex)
$\sin$ denotes the real sine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function


Proof

\(\ds \cos \paren {a + b i}\) \(=\) \(\ds \cos a \cos \paren {b i} - \sin a \sin \paren {b i}\) Cosine of Sum
\(\ds \) \(=\) \(\ds \cos a \cosh b - \sin a \sin \paren {b i}\) Hyperbolic Cosine in terms of Cosine
\(\ds \) \(=\) \(\ds \cos a \cosh b - i \sin a \sinh b\) Hyperbolic Sine in terms of Sine

$\blacksquare$


Also see