# De Morgan's Laws (Logic)

This proof is about De Morgan's Laws in the context of propositional logic. For other uses, see De Morgan's Laws.

## Theorem

### Disjunction of Negations

#### Formulation 1

$\neg p \lor \neg q \dashv \vdash \neg \paren {p \land q}$

#### Formulation 2

$\vdash \paren {\neg p \lor \neg q} \iff \paren {\neg \paren {p \land q} }$

### Conjunction of Negations

#### Formulation 1

$\neg p \land \neg q \dashv \vdash \neg \paren {p \lor q}$

#### Formulation 2

$\vdash \paren {\neg p \land \neg q} \iff \paren {\neg \paren {p \lor q} }$

### Conjunction

#### Formulation 1

$p \land q \dashv \vdash \neg \left({\neg p \lor \neg q}\right)$

#### Formulation 2

$\vdash \left({p \land q}\right) \iff \left({\neg \left({\neg p \lor \neg q}\right)}\right)$

### Disjunction

#### Formulation 1

$p \lor q \dashv \vdash \neg \paren {\neg p \land \neg q}$

#### Formulation 2

$\vdash \left({p \lor q}\right) \iff \left({\neg \left({\neg p \land \neg q}\right)}\right)$

## Also known as

Some sources refer to these laws as the laws of negation.

## The Intuitionist Perspective

Note that this:

$\neg p \land \neg q \dashv \vdash \neg \paren {p \lor q}$

can be proved in both directions without resorting to the LEM.

All the others:

$\neg p \lor \neg q \vdash \neg \left({p \land q}\right)$

$p \land q \vdash \neg \left({\neg p \lor \neg q}\right)$

$p \lor q \vdash \neg \left({\neg p \land \neg q}\right)$

are not reversible in intuitionistic logic.

## Technical Note

When invoking De Morgan's Laws in a tableau proof, use the {{DeMorgan}} template:

{{DeMorgan|line|pool|statement|depends|type}}

where:

line is the number of the line on the tableau proof where the specific instance of De Morgan's Laws is to be invoked
pool is the pool of assumptions (comma-separated list)
statement is the statement of logic that is to be displayed in the Formula column, without the $...$ delimiters
depends is the line (or lines) of the tableau proof upon which this line directly depends
type is the type of De Morgan's Law: Disjunction, Conjunction, Disjunction of Negations or Conjunction of Negations, whose link will be displayed in the Notes column.