Definition:Additive Function on Class of Modules
Jump to navigation
Jump to search
Definition
Let $R$ be a commutative ring with unity.
Let $\CC$ be a class of $R$-modules.
Let $G$ be an abelian group.
Let $\lambda : \CC \to G$ be a mapping.
Then $\lambda$ is called an additive function if and only if:
- for all $M' ', M, M' \in \CC$:
- $0 \to M' ' \to M \to M' \to 0$ is a short exact sequence
- $\implies \map \lambda {M' '} - \map \lambda M + \map \lambda {M'} = 0$
- $0 \to M' ' \to M \to M' \to 0$ is a short exact sequence
Sources
- 1969: M.F. Atiyah and I.G. MacDonald: Introduction to Commutative Algebra: Chapter $2$: Modules