Definition:Continuous Mapping (Metric Space)/Space/Definition 1
Jump to navigation
Jump to search
Definition
Let $M_1 = \struct {A_1, d_1}$ and $M_2 = \struct {A_2, d_2}$ be metric spaces.
Let $f: A_1 \to A_2$ be a mapping from $A_1$ to $A_2$.
$f$ is continuous from $\struct {A_1, d_1}$ to $\struct {A_2, d_2}$ if and only if it is continuous at every point $x \in A_1$.
Also known as
A mapping which is continuous from $\struct {A_1, d_1}$ to $\struct {A_2, d_2}$ can also be referred to as $\tuple {d_1, d_2}$-continuous.
Also see
Sources
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{III}$: Metric Spaces: The Definition
- 1975: Bert Mendelson: Introduction to Topology (3rd ed.) ... (previous) ... (next): Chapter $2$: Metric Spaces: $\S 3$: Continuity: Definition $3.2$
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $2$: Continuity generalized: metric spaces: $2.1$: Motivation: Definition $2.1.3$