Definition:Convergent Sequence/Real Numbers
Jump to navigation
Jump to search
Definition
Let $\sequence {x_k}$ be a sequence in $\R$.
The sequence $\sequence {x_k}$ converges to the limit $l \in \R$ if and only if:
- $\forall \epsilon \in \R_{>0}: \exists N \in \R_{>0}: n > N \implies \size {x_n - l} < \epsilon$
where $\size x$ denotes the absolute value of $x$.
Graphical Illustration
The following diagram illustrates the first few terms of a convergent real sequence.
For the value of $\epsilon$ given, a suitable value of $N$ such that:
- $n > N \implies \size {x_n - l} < \epsilon$
is $6$.
Note on Domain of $N$
Some sources insist that $N \in \N$ but this is not strictly necessary and can make proofs more cumbersome.
Examples
Example: $1 + \dfrac 1 n$
The sequence $\sequence {a_n}_{n \mathop \ge 1}$ defined as:
- $a_n := 1 + \dfrac 1 n$
is convergent to the limit $1$ as $n \to \infty$.
Example: $\dfrac {n^2 - 1} {n^2 + 1}$
- $\ds \lim_{n \mathop \to \infty} \paren {\dfrac {n^2 - 1} {n^2 + 1} } = 1$
Example: $\dfrac {2 n^3 - 3 n} {5 n^3 + 4 n^2 - 2}$
- $\ds \lim_{n \mathop \to \infty} \paren {\dfrac {2 n^3 - 3 n} {5 n^3 + 4 n^2 - 2} } = \dfrac 2 5$
Example: $\dfrac {n^3 + 5 n^2 + 2} {2 n^3 + 9}$
- $\ds \lim_{n \mathop \to \infty} \paren {\dfrac {n^3 + 5 n^2 + 2} {2 n^3 + 9} } = \dfrac 1 2$
Example: $\dfrac {x + x^n} {1 + x^n}$
The sequence $\sequence {a_n}$ defined as:
- $a_n = \dfrac {x + x^n} {1 + x^n}$
is convergent for $x \ne -1$.
Then:
- $\ds \lim_{n \mathop \to \infty} \dfrac {x + x^n} {1 + x^n} = \begin {cases} 1 & : x \ge 1 \\ x & : -1 < x < 1 \\ 1 & : x < -1 \\ \text {undefined} & : x = -1 \end {cases}$
Also see
- Results about convergent real sequences can be found here.
Generalizations
- Definition:Convergent Sequence in Real Euclidean Space
- Definition:Convergent Sequence in Metric Space
Sources
- 1957: Tom M. Apostol: Mathematical Analysis ... (next): $\S 12$-$2$: Convergent and divergent sequences: Definition $12$-$1$
- 1975: Bert Mendelson: Introduction to Topology (3rd ed.) ... (previous) ... (next): Chapter $2$: Metric Spaces: $\S 5$: Limits: Definition $5.1$
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $1$: Review of some real analysis: $\S 1.2$: Real Sequences: Definition $1.2.2$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 4$: Convergent Sequences: $\S 4.4$: Definition of Convergence
- 1992: Larry C. Andrews: Special Functions of Mathematics for Engineers (2nd ed.) ... (previous) ... (next): $\S 1.2$: Infinite Series of Constants
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): limit: 2. (of a sequence)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): limit: 2. (of a sequence)
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (next): $\S 1$: Normed and Banach spaces