Definition:Divisor (Algebra)/Terminology
Jump to navigation
Jump to search
Definition
Let $\struct {R, +, \times}$ be a ring.
Let $x, y \in R$.
Let $x \divides y$ denote that $x$ divides $y$.
Then the following terminology can be used:
In the field of Euclidean geometry, in particular:
- $x$ measures $y$.
To indicate that $x$ does not divide $y$, we write $x \nmid y$.