Definition:Eigenvalue
Jump to navigation
Jump to search
Definition
Linear Operator
Let $K$ be a field.
Let $V$ be a vector space over $K$.
Let $A : V \to V$ be a linear operator.
$\lambda \in K$ is an eigenvalue of $A$ if and only if:
- $\map \ker {A - \lambda I} \ne \set {0_V}$
where:
- $0_V$ is the zero vector of $V$
- $I : V \to V$ is the identity mapping on $V$
- $\map \ker {A - \lambda I}$ denotes the kernel of $A - \lambda I$.
Real Square Matrix
Let $\mathbf A$ be a square matrix of order $n$ over $\R$.
Let $\lambda \in \R$.
$\lambda$ is an eigenvalue of $A$ if and only if there exists a non-zero vector $\mathbf v \in \R^n$ such that:
- $\mathbf A \mathbf v = \lambda \mathbf v$
Also see
- Results about eigenvalues can be found here.