Definition:Eigenvector/Linear Operator
Jump to navigation
Jump to search
Definition
Let $K$ be a field.
Let $V$ be a vector space over $K$.
Let $A : V \to V$ be a linear operator.
Let $\lambda \in K$ be an eigenvalue of $A$.
A non-zero vector $v \in V$ is an eigenvector corresponding to $\lambda$ if and only if:
- $v \in \map \ker {A - \lambda I}$
where:
- $I : V \to V$ is the identity mapping on $V$
- $\map \ker {A - \lambda I}$ denotes the kernel of $A - \lambda I$.
That is, if and only if:
- $A v = \lambda v$
Eigenspace
We say that $\map \ker {A - \lambda I}$ is the eigenspace corresponding to the eigenvalue $\lambda$.
Also see
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next) $\text {II}.4.9$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): eigenvalue, eigenvector
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): eigenvalue, eigenvector