# Definition:Extremum/Functional

Jump to navigation
Jump to search

This article needs to be linked to other articles.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{MissingLinks}}` from the code. |

## Definition

Let $J \sqbrk y: S \to \R$ be a functional.

Let $y, \hat y: \R \to \R$ be real functions.

Suppose for $y = \hat y \paren x$ there exists a neighbourhood of the curve $y = \hat y \paren x$ such that the difference $J \sqbrk y - J \sqbrk {\hat y}$ does not change its sign in this neighbourhood.

Then $y = \hat y$ is called a (**relative**) **extremum** of the functional $J$.

Julius suggests: This page needs the help of a knowledgeable authority.In particular: Check if "some neighbourhood" could be more precisely definedIf you are knowledgeable in this area, then you can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by resolving the issues.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Help}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

## Sources

- 1963: I.M. Gelfand and S.V. Fomin:
*Calculus of Variations*... (previous) ... (next): $\S 1.3$: The Variation of a Functional. A Necessary Condition for an Extremum