Definition:Extremum/Functional
(Redirected from Definition:Extremum of Functional)
Jump to navigation
Jump to search
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Definition
Let $J \sqbrk y: S \to \R$ be a functional.
Let $y, \hat y: \R \to \R$ be real functions.
Suppose for $y = \hat y \paren x$ there exists a neighbourhood of the curve $y = \hat y \paren x$ such that the difference $J \sqbrk y - J \sqbrk {\hat y}$ does not change its sign in this neighbourhood.
Then $y = \hat y$ is called a (relative) extremum of the functional $J$.
![]() | Julius suggests: This page needs the help of a knowledgeable authority. In particular: Check if "some neighbourhood" could be more precisely defined If you are knowledgeable in this area, then you can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by resolving the issues. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Help}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1963: I.M. Gelfand and S.V. Fomin: Calculus of Variations ... (previous) ... (next): $\S 1.3$: The Variation of a Functional. A Necessary Condition for an Extremum