Definition:Ellipse/Focus
< Definition:Ellipse(Redirected from Definition:Focus of Ellipse)
Jump to navigation
Jump to search
This page is about Focus of Ellipse. For other uses, see focus.
Definition
Let $K$ be an ellipse specified in terms of:
- a given straight line $D$
- a given point $F$
- a given constant $\epsilon$ such that $0 < \epsilon < 1$
where $K$ is the locus of points $P$ such that the distance $p$ from $P$ to $D$ and the distance $q$ from $P$ to $F$ are related by the condition:
- $q = \epsilon \, p$
The point $F$ is known as the focus of the ellipse.
Also see
- Results about foci of ellipses can be found here.
Linguistic Note
The word focus is of Latin origin, hence its irregular plural form foci.
It was introduced into geometry by Johannes Kepler when he established his First Law of Planetary Motion.
The word in Latin means fireplace or hearth, which is appropriate, considering the position of the sun.
The pronunciation of foci has a hard c, and is rendered approximately as foke-eye.
Beware the solecism of pronouncing it fo-sigh, which is incorrect.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): ellipse
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): ellipse
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $2$: The Logic of Shape: Problems for the Greeks