Definition:Set Intersection/Set of Sets

From ProofWiki
Jump to: navigation, search

Definition

Let $\Bbb S$ be a set of sets

The intersection of $\Bbb S$ is:

$\displaystyle \bigcap \Bbb S := \set {x: \forall S \in \Bbb S: x \in S}$

That is, the set of all objects that are elements of all the elements of $\Bbb S$.


Thus:

$\displaystyle \bigcap \set {S, T} := S \cap T$


Also denoted as

Some sources denote $\displaystyle \bigcap \mathbb S$ as $\displaystyle \bigcap_{S \mathop \in \mathbb S} S$.


Examples

Set of Arbitrary Sets

Let:

\(\displaystyle A\) \(=\) \(\displaystyle \set {1, 2, 3, 4}\) $\quad$ $\quad$
\(\displaystyle B\) \(=\) \(\displaystyle \set {a, 3, 4}\) $\quad$ $\quad$
\(\displaystyle C\) \(=\) \(\displaystyle \set {2, a}\) $\quad$ $\quad$


Let $\mathscr S = \set {A, B, C}$.

Then:

$\displaystyle \bigcap \mathscr S = \O$


Set of Initial Segments

Let $\Z$ denote the set of integers.

Let $\map \Z n$ denote the initial segment of $\Z_{> 0}$:

$\map \Z n = \set {1, 2, \ldots, n}$


Let $\mathscr S := \set {\map \Z n: n \in \Z_{> 0} }$

That is, $\mathscr S$ is the set of all initial segments of $\Z_{> 0}$.


Then:

$\displaystyle \bigcap \mathscr S = \set 1$


Also see


Sources