Definition:Inverse Image Mapping
Jump to navigation
Jump to search
Definition
Let $S$ and $T$ be sets.
Let $\powerset S$ and $\powerset T$ be their power sets.
Relation
Let $\RR \subseteq S \times T$ be a relation on $S \times T$.
The inverse image mapping of $\RR$ is the mapping $\RR^\gets: \powerset T \to \powerset S$ that sends a subset $Y \subseteq T$ to its preimage $\map {\RR^{-1} } Y$ under $\RR$:
- $\forall Y \in \powerset T: \map {\RR^\gets} Y = \begin {cases} \set {s \in S: \exists t \in Y: \tuple {t, s} \in \RR^{-1} } & : \Img \RR \cap Y \ne \O \\ \O & : \Img \RR \cap Y = \O \end {cases}$
Mapping
Let $f: S \to T$ be a mapping.
The inverse image mapping of $f$ is the mapping $f^\gets: \powerset T \to \powerset S$ that sends a subset $Y \subseteq T$ to its preimage $f^{-1} \sqbrk T$ under $f$:
- $\forall Y \in \powerset T: \map {f^\gets} Y = \begin {cases} \set {s \in S: \exists t \in Y: \map f s = t} & : \Img f \cap Y \ne \O \\ \O & : \Img f \cap Y = \O \end {cases}$
Also see
- Results about inverse image mappings can be found here.