Definition:P-adic Norm/Rational Numbers/Definition 2

From ProofWiki
Jump to navigation Jump to search

Definition

Let $p \in \N$ be a prime.

The $p$-adic norm on $\Q$ is the mapping $\norm {\,\cdot\,}_p: \Q \to \R_{\ge 0}$ defined as:

$\forall r \in \Q: \norm r_p = \begin {cases} 0 & : r = 0 \\ \dfrac 1 {p^k} & : r = p^k \dfrac m n: k, m, n \in \Z, p \nmid m, n \end {cases}$


Also see


Sources