Definition:Rational Number Space

From ProofWiki
Jump to: navigation, search

Definition

Let $\Q$ be the set of rational numbers.

Let $d: \Q \times \Q \to \R$ be the Euclidean metric on $\Q$.

Let $\tau_d$ be the topology on $\Q$ induced by $d$.


Then $\left({\Q, \tau_d}\right)$ is the rational number space.


Also see

  • Results about the rational number space can be found here.


Sources